Ген инсулина

Белковая инженерия, получение инсулина

Биотехнология – самый последний шаг в осуществлении давнего стремления человечества использовать природные процессы для улучшения жизни людей. Биотехнология революционизирует каждую область медицины от диагностики до лечения любого заболевания.

Оглавление:

Она помогает изучать жизненные процессы на молекулярном уровне и в будущем перейти от предположений к точной диагностике и лечению.

Основные задачи, которые решает медицинская биотехнология в медицине:

· сбор и получение информации: диагностикумы, биосенсоры, использование биотехнологических решений и приемов для получения информации (понятие о биотехнологическом приеме);

· получение собственно лекарственных средств (технологии получения инсулина, витамина С, витамина D2, резерпина, биоженьшеня, производство антибиотиков, витаминов, гормонов и др).

Мировой рынок продукции медицинской биотехнологии бурно развивается. Новейшие продукты этого типа — генно-инженерные лекарства и вакцины. Отличные перспективы у российских производителей иммунодиагностических средств нового типа. За последние несколько лет появились их новые виды — биологические микрочипы. Это диагностикумы, которые позволяют в сжатые сроки и с очень высоким качеством диагностировать одновременно десятки и сотни возбудителей инфекционных заболеваний, токсинов или генетических дефектов. Самый эффективный и недорогой тип микрочипа в мире создан именно у нас в стране. Если учесть, что рынок ДНК-диагностики развивается сейчас бурными темпами, то наше участие в нем могло бы стать крайне выгодным.

Емкость российского рынка эксперты оценивают вмлрд руб., его потребности удовлетворяются сейчас лишь на 40-45%, в том числе за счет отечественных производителей примерно на 12-13%. Степень удовлетворения потребностей рынка в фармацевтической биотехнологии составляет 51,3%, пищевых и кормовых добавках — от 22 до 40%, в остальных отраслях — и того меньше.

Лекарственные средства (ЛС) – вещества или их смеси природного, синтетического или биотехнического происхождения, которые применяются для предотвращения беременности, профилактики, диагностики и лечения заболеваний людей или для изменения состояния и функций организма.

К лекарственным средствам относятся субстанции; ГЛС (лекарственные препараты); гомеопатические средства; средства, которые применяются для диагностики возбудителей заболеваний, а также борьбы с возбудителями заболеваний или паразитами; лекарственные косметические средства и лекарственные добавки к пищевым продуктам.

По своему происхождению лекарственные средства делятся на две основные группы:

I. Природные сырьевые материалы растительного, животного и минерального происхождения, прошедшие первичную обработку (очистка от примесей, сушка, сортировка).

Относятся: лекарственное растительное сырье – валерьяновый корень, цветы ромашки, ягоды малины, камеди (абрикосовая камедь), бальзамы (терпентин); лекарственное сырье животного происхождения – железы внутренней секреции домашних животных.

II. Лекарственные вещества, полученные в результате переработки природных сырьевых материалов или целенаправленного синтеза.

II группа делится на следующие группы:

1. Химические препараты. По своей природе это индивидуальные химические вещества, а по своему происхождению – продукты синтеза или очищенные природные вещества, которые являются лекарственными веществами – натрия хлорид, натрия сульфат, серебра нитрат, соляная и серная кислоты, натрия гидрокарбонат, калия перманганат, натрия тиосульфат и т.д.

2. Химико-фармацевтические препараты (ХФП). По своей природе это также индивидуально химические вещества. Получаются в результате органического синтеза, иногда весьма сложного. Входят: сульфаниламидные препараты (стрептоцид, норсульфазол), противотуберкулезные средства (фтивазид), снотворные и анестезирующие вещества, противомалярийные средства (бигумаль). К ХФП относятся также биологически активные вещества, выделенные в чистом виде из сырьевых материалов растительного и животного происхождения (алкалоиды и гликозиды). Отдельную группу представляют препараты радиоактивных изотопов, например препараты радиоактивного йода.

3. Препараты антибиотиков. Антибиотики являются продуктами жизнедеятельности различных микроорганизмов и получаются в результате биологического синтеза при выращивании микроорганизмов на питательных специальных средах. Широко известны антибиотики микробного происхождения (пенициллин, стрептомицин, биомицин, грамицидин). Некоторые из антибиотиков получают синтетически (метициллин, оксациллин). Широким спектром антибактериального действия обладают антибиотики группы цефалоспоринов.

4. Витаминные препараты. Среди них имеются как химически индивидуальные синтетические вещества (аскорбиновая кислота, тиамин, никотиновая кислота, цианокобаламин и др.), так и сложные комплексы веществ (концентраты, экстракты, сиропы).

5. Органопрепараты. Получаются из органов, тканей и соков животного организма. Являются сложными комплексами веществ, содержащими в качестве биологически активных соединений гормональные вещества. Некоторые из них удалось выделить в чистом виде (например, адреналин). Ряд гормонов получают синтетически (половые гормоны). К органопрепаратам относятся также ферменты (пепсин).

6. Вакцины и сыворотки. Это иммунобиологические препараты, вырабатываемые институтами вакцин и сывороток, институтами эпидемиологии, микробиологии и гигиены, а также рядом СЭС.

7. Продукты первичной переработки лекарственного сырья. Относятся: эфирные масла, жиры и жирные масла, получаемые из частей растений и животных.

8. Галеновые препараты. К ним относятся препараты сложного химического состава, приготовляемые путем извлечения из природных лекарственных сырьевых материалов растительного и животного происхождения и содержащие БАВ с др. веществами. Это разные экстракты, настойки, настойки, некоторые сиропы, ароматные воды и т.д. Особую подгруппу составляют новогаленовые препараты, представляющие собой извлечения (экстракты и настойки), но освобожденные от балластных веществ.

В настоящее время в мире, по данным ВОЗ (Всемирной организации здравоохранения), насчитывается около 110 млн людей, страдающих диабетом. И эта цифра в ближайшие 25 лет может удвоиться. Диабет- страшное заболевание, которое вызывается нарушением работы поджелудочной железы, вырабатывающей гормон инсулин, необходимый для нормальной утилизации содержащейся в пище углеводов. На начальных этапах развития болезни достаточно использовать меры профилактики, регулярно следить за уровнем сахара в крови, потреблять меньше сладкого. Однако для 10 млн пациентов показана инсулиновая терапия; они вводят в кровь препараты этого гормона. Начиная с двадцатых годов прошлого века для этих целей использовали инсулин, выделенный из поджелудочной железы свиньи и телят. Инсулин животных аналогичен человеческому, разница заключается в том, что в молекуле инсулина свиньи в отличие от человеческого в одной из цепей аминокислота треонин замещена аланином. Считается, что эти незначительные отличия могут вызвать у пациентов серьезные нарушения в работе почек, расстройстве зрения, аллергию). Кроме того, несмотря на высокую степень очистки, не исключена вероятность переноса вирусов от животных к людям. И, наконец, число больных диабетом растет так быстро, что обеспечить всех нуждающихся животным инсулином уже не представляется возможным. И это весьма дорогое лекарство.

Инсулин был впервые выделен из поджелудочной железы быка в 1921 г. Ф Бантингом и Ч. Бестом. Он сотсоит их двух полипептидных цепей, соединенных двумя дисульфидными связями. Полипептидная цепь А содержит 21 аминокислотный остаток, а цепь В- 30 аминокислотных остатков, молекулярная масса инсулина 5, 7 кDа.

Структура инсулина достаточно консервативна. Аминокислотная последовательность инсулина человека и многих животных различается всего на 1-2 аминокислоты. У рыб по сравнению с животными В- цепь больше и содержит 32 аминокислотных остатка.

Стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуетсякг поджелудочной железы, а одна железа коровы весит грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.

Генетическая инженерия, родившись в начале 70-х годов, добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средсв. В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.

В 1978 году исследователи из компании "Генентек" впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

У животных и человека инсулин синтезируется в β- клетках островков Ларгенганса. Гены, кодирующие этот белок у человека, локализованы в коротком плече 11-ой хромосомы. Зрелая инсулиновая мРНК состоит из 330 нуклеотидов, что соответствует 110 аминокислотным остаткам. Именно такое их количество содержит предшественник инсулина – препроинсулин. Он состоит из одной полипептидной цепи, на N- конце которой находится сигнальный пептид (24 аминокислоты), а между А- и В- цепями локализован С- пептид, содержащий 35 аминокислотных остатков.

Процесс созревания инсулина начинается в цисцернах эндоплазматического ретикулума, где под действием фермента сигналазы с N- конца отщепляется сигнальный пептид. Далее в аппарате Гольджи под действием эндопептидаз вырезается С-пептид и образуется зрелый инсулин. На транс- стороне аппарата Гольджи новосинтезированный гормон соединяется с цинком, образуя надмолекулярные структуры (три-, тетра, — пента- и гексамеры), перемещающиеся затем в секреторные гранулы.

Последние отделяются от аппарата Гольджи, перемещаются к цитоплазатической мемебране, ассоциируются с ней, и инсулин секретируется в кровяное русло. Скорость секреции гормона определяется концентрацией глюкозы и ионов Са 2+ в крови. Адреналин подавляет освобождение инсулина, а такие гормоны, как ТТГ и АКТГ, напротив, способствуют его секреции. В крови инсулин находится в двух формах: свободной и связанной с белками, преимущественно с транферрином и α2— глобулином. Время «полужизни» инсулина составляет около пяти минут, причем распад начинается в крови, т.к. в эритроцитах имеются инсулиновые рецепторы и довольно активная инсулин- деградирующая система. Инсулиназа эритроцитов является Са- зависимой, тиоловой протеиназой, функционирующей совместно с глутатион- инсулин-ирансгидрогеназой, расщепляющей дисульфидные связи между двумя полипептидными цепями инсулина.

Фрагментация инсулина и его распад происходят преимущественно в печени, почках и плаценте.

Фрагменты инсулина обладают биологической активностью и участвуют в ряде метаболических процессов. Одной из осеовных функций инсулина является регуляйия транспорта глюкозы, аминокислот, ионов и др. метаболитов в клетки печени, почек, жировой ткани др. органов. Механизм действия этого гормона отличается от такового для др. пептидных гормонов и является уникальным в регуляции метаболических процессов. Инсулиновый рецептор представляет собой тетрамер, состоящий из двух α- и двух β-субъединиц, одна из которых обладает тироксиназной активностью. Инсулин при взаимодействии с α-субъединицами, расположенными на поверхности цитоплазматической мембраны, образует гормон- рецепторный комплекс. Конформационные изменения тетрамера приводят к активации трансмембранной β-субъединицы рецептора, обладающей тирозинкиназной активностью. Активная тирозинкиназа способна к фосфорилированию мембранных белков.Образуются мембранные каналы, через которые глюкоза и др. метаболиты проникают в клетки. Свободный инсулин под действием тканевой инсулиназы распадается на семь фракций, пять из которых обладают биологической активностью.

Кроме того, инсулин стимулирует ряд биосинтетических процессов: синтез нуклеотидов, нуклеиновых кислот, ферментов гликолиза и пентозофосфатного цикла, гликогена. В жировой ткани инсулин активирует процесс образования ацетил Ко А и жирных кислот. Он является одним из индукторов синтеза холестерина, глицерина и глицераткиназы.

Мутации в структуре инсулинового гена, нарушение механизмов посттранскрипционного и посттрансляционного процессинга приводят к образованию дефектных молекул инсулина и, как следствие, к нарушению обменных процессов, регулируемых данным гормоном. В результате развивается тяжелое заболевание – сахарный диабет.

Разработка технологии производства искусственного инсулина является поистине триумфом генетиков. Сначала с помощью специальных методов определили строение молекулы этого гормона, состав и последовательнгсть аминокислот в ней. В 1963 г. молекулу инсулина синтезировали с помощью биохимических методов. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, включающий 170 химических реакций, оказалось сложно.

Поэтому в дальнейших исследованиях упор был сделан на разработку технологии биологического синтеза гормона в клетках микроорганизмов, для чего использовали весь арсенал методов генетической инженерии. Зная последовательность аминокислот в молекуле инсулина, ученые рассчитали, какой должна быть последовательность нуклеотидов в гене, кодирующем этот белок, чтобы получить нужную последовательность аминокислот. «Собрали» молекулу ДНК из отдельных нуклеотидов в соответствии с определенной последовательностью, «добавили» к ней регуляторные элементы, нкеобходимые для экспрессии гена в прокариотическом организме Е.coli, и встроили эту конструкцию в генетический материал микроба. В результате бактерия смогла вырабатывать две цепи молекулы инсулина, которые в дальнейшем можно было соединить с помощью химической реакции и получить полную молекулу инсулина.

Наконец, ученым удалось осуществить в клетках Е.coli биосинтез молекулы проинсулина, а не только ее отдельных цепей. Молекула проинсулина после биосинтеза способна соответствующим образом преобразовываться (формируются дисульфидные связи между цепями А и В), превращаясь в молекулу инсулина. Эта технология имеет серьезные преимущества, поскольку различные этапы экстракции и выделения гормона сведены до минимума. При разработке такой технологии была выделена информационная РНК проинсулина. Используя ее в качестве матрицы, с помощью фермента обратной транскриптазы синтезировали комплементарную ей молекулу ДНК, которая представляла собой практически точную копию натурального гена инсулина. После пришивания к гену необходимых регуляторных элементов и переноса конструкции в генетический материал Е.coli

Стало возможным производить инсулин на микробиологической фабрике в неограниченных количествах. Его испытания показали практически полную идентичность натуральному инсулину человека. Он намного дешевле препаратов животного инсулина, не вызывает осложнений.

Соматотропин — гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа:мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход "белок-ген", получивший название "обратная генетика". При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.

Сейчас даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

Источник: http://biofile.ru/bio/16295.html

Центр иммунологии и репродукции

ЦИР – территория здоровья!

Роль генетических факторов в развитии СПКЯ

Ключевые гены, имеющие отношение к развитию клинических проявлений СПКЯ представлены двумя основными группами.

В первую группу включены гены, контролирующие метаболические процессы обмена глюкозы и, соответственно, состояния гиперинсулинемии и инсулинорезистентности.

Во вторую группу включены гены, отвечающие за синтез стероидных гормонов и индивидуальную чувствительность тканей к андрогенам.

Изменения в структуре одного или нескольких из этих генов могут вызвать развитие тех или иных клинических симптомов (или симптомокомплексов), характерных для синдрома поликистозных яичников. Разнообразие клинических и биохимических проявлений СПКЯ объясняется взаимодействием между небольшим числом ключевых генов и внешними факторами.

Информация о генетической предрасположенности к СПКЯ позволяет врачу выявить причинно-следственные связи возникновения различных клинических проявлений СПКЯ и может быть полезна при выборе методов лечения.

Ген инсулина (INS)

На 11 хромосоме в участке 11р15.5 располагается локус предрасположенности к инсулинозависимому сахарному диабету (IDDM2, insulin-dependent diabetes mellitus, locus 2). Локус предрасположенности IDDM2 расположен в гене (INS) на хромосоме 11. Область предрасположенности IDDM2 длиной 4,1 т.п.н. (тысяч пар нуклеотидов). Она состоит из тандемно повторяющихся единиц размеромп.н. с последовательностью AGAGGGGTGTGGGG . Число повторов в составе VNTR может варьировать от 26 до более чем 200. В зависимости от их числа аллели VNTR подразделяют на 3 класса.

Аллели класса I содержат от 26 до 63 повторяющихся единиц (VNTR).

Аллели класса II содержат от 64 до 140 VNTR.

Аллели класса III включают от 141 до 209 VNTR.

Носительство аллелей класса III аллелей связано с абдоминальным ожирением и предрасполагает к развитию сахарного диабета 2-го типа. При этом наблюдается повышенная секреция инсулина в связи с усиленной экспрессией гена. У женщин носительство аллелей класса III предрасполагает к развитию синдрома поликистозных яичников.

PPAR y 2

Часто встречаемым вариантом аллеля является замена цитозина на гуанин в экзоне 2 (C34G), что приводит к замене пролина на аланин в кодоне 12. Полиморфизм Pro12Ala гена рецептора y2, активируемого пролифератором пероксисом peroxisome proliferator-activated receptor y 2 (PPARy 2) связан с риском ожирения, инсулинорезистентности и развития сахарного диабета 2-го типа. Ген PPARy 2 экспрессируется в жировой ткани и регулирует дифференцировку адипоцитов и генную экспрессию в адипоцитах. Кроме того, ген экспрессируется и в бета-клетках поджелудочной железы. Поэтому возможно влияние аллеля Ala12 на секрецию инсулина поджелудочной железой. Фактором риска ожирения является носительство аллеля Ala12. Частота варианта Ala12 составляет 12-15%.

Своевременное выявление носительства данного аллеля позволяет рекомендовать изменения в диете, усиление физической активности и снижение массы тела, что позволяет практически полностью снизить риск развития диабета в этой группе лиц.

CYP11A

У женщин наблюдается гораздо более сложная картина, связанная с тем, что в каждой клетке женщины имеется не одна (как у мужчин), а 2 X-хромосомы, причем только одна X-хромосома является «рабочей», а другая инактивирована. В разных клетках даже одной ткани могут быть инактивированы разные X-хромосомы, поэтому в разных клетках яичника могут быть включены разные варианты андрогеновых рецепторов.

Исследования полиморфизма AR в клинической практике базируются на классической публикации Hickey и соавт. (2002), показавших на популяции австралийских женщин европейского происхождения на первый взгляд парадоксальную связь между гиперандрогенией, ассоциированной с синдромом поликистозных яичников, и длиной полиморфного участка в домене трансактивации. Оказалось, что классическая форма СПКЯ ассоциирована с «длинными» (больше 22 повторов) вариантами гена AR.

Другие исследования показали достаточно сложную связь между количеством повторов и различными проявлениями гиперандрогении. В частности, сообщается о повышении риска СПКЯ при нормальном уровне тестостерона у женщин при наличии коротких форм полиморфизма, а также о возможной роли коротких форм полиморфизма как дополнительного фактора инсулинорезистентности при гиперандрогенных состояниях у женщин.

В настоящее время полиморфизм гена AR должен считаться не самостоятельным, а дополнительным маркером риска гиперандрогений. Интерпретация анализа осуществляется следующим образом. У мужчин: наличие коротких форм полиморфизма ( НАЧНИТЕ ЗАБОТИТЬСЯ О СЕБЕ! УДАЧИ И КРЕПКОГО ЗДОРОВЬЯ!

Наши врачи

Захарова Ирина Александровна

Баннова Анна Евгеньевна

ЛОР-врач (оториноларинголог, отоларинголог)

Тимофеева Оксана Валерьевна

Отзывы

График работы клиник в феврале

Комментарии

Медиа

Лицензия № ЛО791 от 24.01.2017

Центр иммунологии и репродукции © ООО «Лаборатории ЦИР» 2006–2017

Источник: http://www.cironline.ru/articles/169/92520/

Ген инсулина

Островки в поджелудочной железе были обнаружены в 1860 г. Лангерганс, которому принадлежит это открытие, не представлял себе, какова их функция; не знали этого ни Меринг, ни Минковский, установившие в 1889 г., что удаление поджелудочной железы приводит к сахарному диабету. Предположение о наличии тесной связи между островками и диабетом высказали де Мейер в 1909 г. и Шарпей-Шаффер в 1917 г., но только в 1921 г. Бантинг и Бест доказали это. Экстрагировав подкисленным этанолом ткань поджелудочной железы, они выделили некий фактор, обладающий мощным гипогликемизирующим действием. Этот фактор был назван инсулином. Вскоре было установлено, что инсулин, содержащийся в островках поджелудочной железы крупного рогатого скота и свиней, активен и у человека. Не прошло и года, как этот препарат стал широко и успешно применяться для лечения диабета.

Бычий и свиной инсулин можно легко получать в больших количествах, что является важнейшим условием для успешного биохимического исследования. Именно инсулин оказался первым белком с доказанной гормональной активностью, первым белком, полученным в кристаллическом виде (Abel, 1926), первым белком, у которого была установлена аминокислотная последовательность (Sanger et al, 1955), первым белком, синтезированным химическими методами (Du et al.; Zahn; Katsoyanis, 1964). Именно для инсулина впервые было показано, что молекула может синтезироваться в виде более крупного предшественника (Steiner et al., 1967). Кроме того, инсулин оказался первым белком, полученным для коммерческих целей с использованием технологии рекомбинантных ДНК. Но, несмотря на эти впечатляющие «первенства», механизм действия инсулина на молекулярном уровне изучен хуже, чем для большинства других гормонов.

Химические свойства

Молекула инсулина — полипептид, состоящий из двух цепей, А и В, связанных между собой двумя дисульфидными мостиками, соединяющими остаток А7 с остатком В7 и остаток А20 с остатком В19. Третий дисульфидный мостик связывает между собой остатки 6 и 11 A-цепи. Локализация всех трех дисульфидных мостиков постоянна, а А- и В-цепи у представителей большинства видов имеют по 21 и 30 аминокислот соответственно. Ковалентная структура человеческого инсулина (мол. масса 5734) показана на рис. 51.1, сведения об аминокислотных заменах в инсулинах различных видов содержатся в табл. 51.2. В обеих цепях во многих положениях встречаются замены, не оказывающие влияния на биологическую активность гормона, однако наиболее часты замены по положениям 8,9 и 10 A-цепи. Из этого следует, что данный участок молекулы не имеет критического значения для биологической активности инсулина. Однако некоторые участки и области молекулы инсулина обладают высокой консервативностью.

Рис. 51.1. Ковалентная структура инсулина человека. (Reproduced, with permission, from Ganong W.F. Review of Medical Physiology, 13th ed., Appleton and Lange, 1987.)

Рис. 51.2. Участок молекулы инсулина, отвечающий за его биологическую активность. Данная схема молекулы инсулина построена по результатам рентгеносгруктурпой кристаллографии. Заштрихованная область соответствует той части инсулина, которой отводят главную роль в реализации биологической активности гормона. Остатки Phe в положениях В24 и В25 — это те сайты, мутации в которых влияют на биологическую активность инсулина. N-концы А- и В-цепей инсулина показаны знаком « + », тогда как С-концы — знаком « -». (Redrawn and reproduced, with permission, from Tager H.S. Abnormal products of the human insulin gene, Diabetes, 1984, 33, 693.)

К ним относятся 1) положения трех дисульфидных мостиков, 2) гидрофобные остатки в С-концевом участке В-цепи и 3) С- и N-концевые участки А-цепи. Использование химических модификаций и замен отдельных аминокислот шести этих участков помогли идентифицировать сложный активный центр (рис. 51.2). Расположенный на С-конце В-цепи гидрофобный участок участвует гакже в димеризации инсулина.

Как явствует из табл. 51.2, между инсулином человека,

Таблица 51.2. Различия в структуре инсулина у представителей разных видов млекопитающих. (Modified and reproduced, with permission, from Banong W. F.: Review of Medical Physiology. 13th ed., Appleton and Lange, 1987.)

свиньи и быка существует большое сходство.

Инсулин свиньи отличается от человеческого инсулина одной-единственной аминокислотной заменой: вместо треонина в положении 30 В-цепи находится аланин. В бычьем инсулине помимо этого треонин А8 заменен на аланин, а изолейцин А10 — на валин. Эти замены практически не влияют на биологическую активность гормона и очень слабо влияют на его антигенные свойства. Хотя у большинства больных, получавших гетерологичный инсулин, обнаруживаются циркулирующие в небольшом титре антитела против введенного гормона, некоторые пациенты демонстрируют титр антител клинически значимой величины. До тех пор пока человеческий инсулин не научились получать с помощью методов генной инженерии, для терапевтических целей использовали обычно бычий и свиной инсулины. Несмотря на значительные различия в первичной структуре, все три инсулина имеют сходную биологическую активность (25-30 МЕд/мг сухого веса).

Инсулин образует очень интересные сложные структуры. Цинк, концентрация которого в В-клетках достигает высоких значений, формирует комплексы с инсулином и проинсулином. Инсулины всех позвоночных образуют изологичные димеры с помощью водородных связей между пептидными группами остатков В24 и В26 двух мономеров, которые при высоких концентрациях в свою очередь реорганизуются в гексамеры, содержащие по два атома цинка каждый. Наличие такой высоко упорядоченной структуры облегчило изучение кристаллической структуры инсулина. При физиологических концентрациях инсулин находится, вероятно, в мономерной форме.

Биосинтез

А. Предшественники инсулина. Инсулин синтезируется в виде препрогормона (мол. масса). Он

Рис. 51.3. Биосинтез инсулина с образованием короткоживущего предшественника. Буквами А, В и С обозначены А- и В-цепи инсулина и связующий (С) пептид. Лидерная последовательность из 23 аминокислот, закодированная в сегменте мРНК, расположенном рядом с тем сегментом, который детерминирует В-цепь (прерывистая линия), после образования отщепляется, вероятно, еще до завершения синтеза остальной части молекулы проинсулина. (Reproduced, with permission, from Steiner D. F.. Erros in insulin biosynthesis, N. Engl. J. Med., 1976, 294, 952.)

Рис. 51.4. Структура проинсулина человека. Молекулы инсулина и С-пептида связаны между собой с помощью двух ди-пептидных линкеров, расположенных по обе стороны от С-пептида. (Slightly modified and reproduced, with permission, from Karam J. H., Sabler P. R., Forsham P. H. Pancreatic hormones and diabetes mellitus. In: Basic and Clinical Endocrinology, 2nd ed., Greenspan F. S., Forsham P. H.(eds.), Appleton and Lange, 1986.)

может служить примером пептида, образующегося в результате различных преобразований из более крупной молекулы предшественника. Последовательность и субклеточная локализация соответствующих биохимических превращений показаны на рис. 51.3. Состоящая из 23 аминокислот гидрофобная лидерная последовательность (пре-фрагмент) направляет молекулу-предшественник в цистерну эндоплазматического ретикулума и там отделяется. В результате образуется молекула проинсулина (мол. масса 9000), принимающая конформацию, необходимую для образования нужных дисульфидных мостиков. Как показано на рис. 51.4, молекула проинсулина имеет следующее строение, считая от аминоконца:

Молекула проинсулина расщепляется в нескольких специфических участках с образованием эквимолярных количеств зрелого инсулина и С-пептида. Эти ферментативные превращения, показанные схематически на рис. 51.5, начинаются с протеиназы, обладающей трипсиноподобной активностью — ферментом, отщепляющим с каждой из сторон С-пептида по две основные аминокислоты: дипептид Arg31-Arg32 на N-конце С-пептида и дипептид Lys64-Arg65 — на С-конце С-пептида2.

Б. Предшественники других гормонов островковых клеток. Синтез других гормонов островковых клеток также требует ферментативного превращения молекул-предшественников с большей молекулярной массой. Строение молекул панкреатического полипептида, глюкагона и соматостатина в сравнении со строением инсулина схематически показано на рис. 51.6. В образовании этих гормонов участвуют различные комбинации эндопротеолитических (трипсиноподобных) и экзопротеолитических (подобных карбоксипептидазе-В) ферментов, поскольку обладающие гормональной активностью

Рис. 51.5. Стадии расщепления проинсулина человека при совместном действии протеиназ, подобных трипсину, и кар-боксипептидазе В. Стрелками показано, в каких местах происходит расщепление молекулы. (Redrawn and reproduced, with permission, from Steiner D. F., Tager H. S. p. 927. In: Endocrinology, Vol. 2., DeGroot L. J. (ed.), Grune and Stratton, 1979.)

последовательности могут обнаруживаться в различных участках молекулы-предшественника: соматостатин — на карбоксильном конце молекулы, панкреатический полипетид — на аминоконце, инсулин — на обоих концах и глюкагон — в средней части.

В. Субклеточная локализация синтеза инсулина и формирование гранул. Синтез инсулина и его упаковка в 1 ранулы происходит в определенном порядке (рис. 51.7). Проинсулин синтезируется на рибосомах шероховатого эндоплазматического ретикулума. Затем в цистернах этой органеллы происходит ферментативное отщепление лидерной последовательности (пре-сегмент), образование дисульфидных мостиков и складывание молекулы (рис. 51.3). После этого молекула проинсулина переносится в аппарат Гольджи, где начинаются протеолиз и упаковка в секреторные гранулы. Созревание гранул продолжается по мере продвижения по цитоплазме в направлении плазматической мембраны. Как проинсулин, так и инсулин соединяются с цинком, образуя гексамеры, но поскольку около 95% проинсулина превращается в инсулин, то именно кристаллы последнего придают гранулам их морфологические особенности. Наряду с инсулином в гранулах содержатся также эквимолярные количества С-пептида, однако эти молекулы не образуют кристаллических структур.

Рис. 51.6. Схема строения четырех основных продуктов эндокринных клеток поджелудочной железы. Черными полосками показана часть молекулы предшественника, соответствующая указанному в надписи гормону, тонкой линией обозначены остальные участки пептидной цепи молекулы-предшественника. Места расположения двухосновных аминокислот (аргинина или лизина), где происходит расщепление молекулы-предшественника, обозначены черными кружками. Молекула проинсулина изображена в виде линейной структуры, в которой дисульфидные связи не показаны. В действительности молекула проинсулина имеет последовательность: В-цепь — С-пептид — A-цепь. (Redrawn and reproduced, with permission, from Tager H. S. Abnormal products of the human insulin gene. Diabetes. 1984. 33. 693.)

При соответствующей стимуляции зрелые гранулы сливаются с плазматической мембраной, выбрасывая свое содержимое во внеклеточную жидкость путем эмиоцитоза.

Г. Свойства проинсулина и С-пептида. Длина проинсулинов колеблется от 78 до 86 аминокислот, причем эти различия обусловлены длиной С-пептида. Проинсулин имеет ту же растворимость и изоэлектрическую точку, что и инсулин. Он также образует гексамеры с кристаллами цинка и реагирует с антисывороткой к инсулину. Биологическая активность проинсулина составляет менее 5% биологической активности инсулина. Отсюда следует, что большая часть активного центра инсулина в молекуле предшественника замаскирована. Некоторая часть проинсулина секретируется вместе с инсулином, а в определенных ситуациях (опухоль из островковых клеток) он высвобождается в больших количествах, чем в норме. Поскольку период полужизни проинсулина в плазме значительно выше, чем у инсулина, и при этом проинсулин дает сильную перекрестную реакцию с антисывороткой к инсулину, уровень «инсулина», определяемый радиоиммунологическим методом, в некоторых случаях может превышать содержание биологически активного гормона.

Рис. 51.7. Структурные компоненты В-клетки поджелудочной железы, участвующие в индуцированных глюкозой биосинтезе и секреции гормона. На схеме секреторные гранулы прилегают к микрофиламентам, которые сокращаются под влиянием кальция. (Based on data presented by Orci L. A portrait of the pancreatic В cell, Diabetologia, 1974, 10, 163.) (Modified and reproduced, with permission, from Junqueira L. C., Carneiro J., Long J. A., Basic Histology. 5th ed., Appleton and Lange, 1986.)

Какой-либо биологической активности С-пептида не обнаружено. Эта молекула обладает иными антигенными свойствами, чем инсулин и проинсулин, поэтому иммунологическое определение С-пептида позволяет отличить эндогенносекретируемый инсулин от вводимого гормона и дает возможность судить о количестве эндогенного инсулина в тех случаях, когда его прямое определение оказывается невозможным из-за наличия инсулиновых антител. С-пептиды представителей различных видов характеризуются высокой частотой аминокислотных замен, что подтверждает положение о вероятном отсутствии биологической активности у этого фрагмента.

Д. Предшественники пептидов, родственных инсулину. Структурная организация молекулы прогормона неспецифична для предшественника инсулина. Предшественники близкородственных инсулину пептидных гормонов (релаксина и инсулиноподобных факторов роста) имеют такую же организацию (рис. 51.8). У всех этих гормонов последовательности А- и В-цепей в молекуле предшественника имеют на карбоксильных и аминоконцах высокогомологичные участки, соединяющиеся между собой связующим пептидом. В пептидных предшественниках инсулина и релаксина по обе стороны от связующего пептида расположены по две основные аминокислоты, соединяющие его с А- и В-цепями. После возникновения между А- и В-цепями дисульфидных мостиков связующий пептид вырезается в результате эндопротеолиза, и молекула превращается в пептидный гормон, состоящий из двух (А и В) цепей. Инсулиноподобные факторы роста, будучи высокогомологичными инсулину и релаксину по своей первичной структуре, тем не менее имеют одно важное отличие: в молекуле их предшественника отсутствуют участки, по которым происходит отщепление связующего пептида, и поэтому активные гормоны сохраняют структуру единой полипептидной цепи.

Е. Ген инсулина человека. Ген человеческого инсулина (рис. 51.9) локализован в коротком плече хромосомы 11. У большинства млекопитающих экспрессируется один ген инсулина, организованный подобно человеческому гену, но у крыс и мышей имеются два неаллельных гена. В каждом из них закодирован особый проинсулин, дающий начало двум различным активным молекулам инсулина. В настоящее время разработан метод получения человеческого инсулина в бактериальных экспрессирующих системах с использованием технологии рекомбинантных ДНК. Таким образом, проблему получения этого гормона в количествах, необходимых для больных диабетом, можно считать решенной.

Ж. Аномальные продукты гена инсулина человека. Знание структуры инсулинового гена и инсулиновой

Рис. 51.8. Схематическое изображение структуры предшественников родственных инсулину пептидов. Гомологичные участки релаксина, инсулина и инсулиноподобного фактора роста изображены в виде черных полос. Аминокислотные последовательности, соединяющие В- и А-цепи в молекуле предшественников релаксина и инсулина, обозначены светлыми полосами. В ходе процессинга предшественников с образованием соответствующих продуктов, состоящих из двух цепей, эти связующие последовательности удаляются (вертикальные стрелки). Аминокислотная последовательность инсулиноподобного фактора роста, соответствующая таким связующим пептидам, но не удаляемая в ходе процессинга, изображена участком с точками. Инсулинопочобный фактор роста состоит лишь из одной пептидной цепи. (Redrawn and reproduced, with permission, from Tager H. S. Abnormal products of the human insulin gene, Diabetes, 1984, 33, 693.)

молекулы позволяет выявлять аномальные продукты гена, что в свою очередь дает дополнительную информацию о функции данного гормона. Выявлены три мутации этого гена, причем для каждой из них идентифицирована молекулярная основа дефекта. В одном случае в результате мутации единичного основания на месте фенилаланина-В24 оказался серии, в другом (опять-таки в результате единичной мутации) произошла замена фенилаланина-В25 на лейцин. В третьем случае изменился процессинг проинсулина в активный гормон: мутация нарушила отщепление З-конца С-пептида на границе с А-цепью. В основе этого дефекта лежит замена дипептида Lys-Arg в этом месте полипептидной цепи на Lys-X, в результате которой трипсиноподобное расщепление оказалось невозможным.

Рис. 51.9. Схематическое изображение структуры гена человеческого инсулина. Области, заштрихованные диагональными линиями, соответствуют нетранслируемым областям мРНК. Светлые участки соответствуют вставочным последовательностям, участки, выделенные пунктиром, — кодирующим последовательностям. Буквами L, В, С и А обозначены последовательности, кодирующие лидерный (сигнальный) пептид, В-цепь инсулина. С-пептид и А-цепь инсулина соответственно. Следует обратить внимание на то, что кодирующая последовательность для С-пептида разделена вставочной последовательностью. Масштаб в схеме выдержан. (Redrawn and reproduced, with permission. from Tager H. S. Abnormal products of the human insulin gene. Diabetes, 1984, 33, 639.)

Выявлению описанных мутаций способствовала их локализация в активном центре молекулы инсулина, в результате чего у соответствующих носителей 1) имеет место гиперинсулинемия, 2) отсутствуют признаки инсулинорезистентности, 3) снижена биологическая активность циркулирующего в крови инсулина и 4) отмечается нормальная реакция на экзогенный инсулин. По крайней мере еще четыре нуклеотидные замены были идентифицированы у «здоровых» людей. Эти мутации локализованы во вставочных (т. е. некодирующих) последовательностях, и на функциональную активность молекулы инсулина они не повлияли.

Регуляция секреции инсулина

Поджелудочная железа человека секретирует доед. инсулина в сутки, что соответствует 15—20% общего количества гормона в железе. Секреция инсулина — энергозависимый процесс, происходящий с участием системы микротрубочек и микрофиламентов островковых В-клеток и ряда медиаторов.

А. Глюкоза. Повышение концентрации глюкозы в крови—главный физиологический стимул секреции инсулина. Пороговой для секреции инсулина является концентрация глюкозы натощакмг%, а максимальная реакция достигается при концентрации глюкозымг%. Секреция инсулина в ответ на повышение концентрации глюкозы носит двухфазный характер (рис. 51.10). Немедленный ответ, или первая фаза реакции, начинается в пределах 1 мин после повышения концентрации глюкозы и продолжается в течение 5—10 мин. Затем наступает более медленная и продолжительная вторая фаза, обрывающаяся сразу после удаления глюкозного стимула. Согласно существующим представлениям, наличие двух фаз ответной реакции инсулина отражает существование двух различных внутриклеточных компартментов, или пулов, инсулина. Абсолютная концентрация глюкозы в плазме — не единственная

Рис. 51.10. Двухфазный характер секреции инсулина в ответ на повышение концентрации глюкозы в плазме крови.

детерминанта секреции инсулина. В-клетки реагируют и на скорость изменения концентрации глюкозы в плазме.

При пероральном введении глюкозы происходит гораздо более сильная стимуляция секреции инсулина, чем при ее внутривенном введении. Отсюда следует, что на секрецию инсулина помимо глюкозы влияют также и различные гормоны желудочно-кишечного тракта, такие, как секретин, холецистокинин, гастрин и энтероглюкагон. Однако наибольшая роль в этом процессе принадлежит желудочному ингибиторному полипептиду (ЖИП).

Предполагаются два разных механизма регуляции глюкозой секреции инсулина. Согласно одной гипотезе, глюкоза взаимодействует с рецептором, локализованным, вероятно, на поверхностной мембране В-клетки, что и приводит к активации механизма секреции. Вторая гипотеза исходит из того, что в стимуляции секреции инсулина участвуют внутриклеточные метаболиты или скорость таких метаболических путей, как пентозофосфатный шунт, цикл лимонной кислоты или гликолиз. Обе гипотезы нашли экспериментальные подтверждения.

Б. Гормональные факторы. На высвобождение инсулина влияет множество гормонов. а-Адренергические агонисты, особенно адреналин, подавляют секрецию инсулина даже при стимуляции этого процесса глюкозой. -Адренергические агонисты стимулируют секрецию инсулина, вероятно, путем повышения концентрации внутриклеточного сАМР (см. ниже). Именно этот механизм, по-видимому, лежит в основе действия желудочного ингибиторного пептида, который повышает секрецию инсулина, а также в основе эффектов высоких концентраций ТТГ, АКТГ, гастрина, секретина, холеци-стокинина и энтероглюкагона.

При хроническом воздействии избыточных количеств гормона роста, кортизола, плацентарного лактогена, эстрогенов и прогестинов секреция инсулина также повышается. Поэтому и неудивительно, что на поздних сроках беременности секреция инсулина значительно возрастает.

В. Фармакологические агенты. Секрецию инсулина стимулируют многие лекарственные препараты, однако в терапевтических целях чаще всего используются производные сульфонилмочевины. Для лечения диабета типа II (инсулиннезависимого) широко применяют такие средства, как толбутамид, который стимулирует секрецию инсулина иным способом, чем глюкоза.

Г. Внутриклеточные медиаторы секреции. При стимуляции секреции инсулина глюкозой возрастает потребление О, и использование АТР. Это сопряжено с индуцированной деполяризацией мембраны, что приводит к быстрому проникновению в клетку по потенциал-зависимому каналу. Слияние инсулин-содержащих секреторных гранул с плазматической мембраной и происходящая в результате секреция инсулина — процесс, зависимый от кальция. Стимуляция секреции инсулина глюкозой происходит и с участием метаболитов фосфатидилинозитола (гл. 44).

В процессе секреции инсулина участвует и который потенциирует эффекты глюкозы и аминокислот. Этот нуклеотид может стимулировать высвобождение из внутриклеточных органелл или активировать киназу, фосфорилирующую какой-то компонент системы микрофиламенты — микротрубочки (что обусловливает ее чувствительность к и способность к сокращению). Замена внеклеточного на какой-либо другой одновалентный катион ослабляет эффекты глюкозы и других стимуляторов секреции инсулина; возможно, регулирует внутриклеточную концентрацию через систему совместного транспорта.

Метаболизм инсулина

В отличие от инсулиноподобных факторов роста инсулин не имеет белка-носителя в плазме. Поэтому в норме период его полужизни не достигает и 3—5 мин. Метаболические превращения инсулина происходят в основном в печени, почках и плаценте. Около 50% этого гормона исчезает из плазмы за один пассаж через печень. В метаболизме инсулина участвуют две ферментные системы. Первая представляет собой инсулин — специфическую протеиназу, обнаруживаемую во многих тканях, но в наибольшей концентрации — в органах, перечисленных выше. Эта протеиназа была выделена из скелетных мышц и очищена. Установлено, что ее активность зависит от сульфгидрильных групп и проявляется при физиологических значениях Вторая система — глутатион-инсулин-трансгидрогеназа. Этот фермент восстанавливает дисульфидные мостики, после чего отделенные друг от друга А- и В-цепи быстро расщепляются. Какой из двух механизмов наиболее активен в физиологических условиях, не ясно; не ясно также, является ли каждый из них регулируемым.

Физиологические эффекты инсулина

О том, сколь велика роль инсулина в углеводном, белковом и липидном обмене, яснее всего свидетельствуют последствия инсулиновой недостаточности у человека. Основным признаком сахарного диабета является гипергликемия, развивающаяся в результате 1) пониженного проникновения глюкозы в клетки, 2) снижения утилизации глюкозы различными тканями

и 3) повышения образования глюкозы (глюконеогенеза) в печени. Ниже мы рассмотрим все эти процессы более подробно.

Полиурия, полидипсия и потеря веса, несмотря на адекватное потребление калорий, — таковы главные симптомы инсулиновой недостаточности. Чем они объясняются? Если в норме уровень глюкозы в плазме у человека редко превышает 120 мг%, то у больных с инсулиновой недостаточностью он, как правило, бывает значительно выше. Когда содержание глюкозы в плазме достигает определенных значений (у человека это обычно выше 180 мг%), максимальная способность реабсорбции глюкозы в почечных канальцах оказывается превышенной и сахар выделяется с мочой (глюкозурия). Объем мочи при этом увеличивается из-за осмотического диуреза, что обязательно сопровождается вначале потерей жидкости (полиурия), затем обезвоживанием организма, жаждой и чрезмерным потреблением воды (полидипсия). Глюкозурия вызывает значительную потерю калорий (4,1 ккал на каждый грамм экскретируемой глюкозы), что в сочетании с потерей мышечной и жировой ткани приводит к резкому похуданию, несмотря на повышенный аппетит (полифагия) и нормальное или увеличенное потребление калорий.

В отсутствие инсулина снижается биосинтез белка, что отчасти объясняется уменьшением транспорта аминокислот в мышцы (аминокислоты служат субстратами для глюконеогенеза). Таким образом, инсулиновая недостаточность у человека сопровождается отрицательным азотным балансом. Характерное для этой ситуации отсутствие антилиполитического действия инсулина, равно как и его липогенного действия, приводит к тому, что содержание жирных кислот в плазме возрастает. Когда оно достигает уровня, превышающего способность печени окислять жирные кислоты до в крови накапливаются Р-гидроксимасляная и ацетоуксусная кислоты (кетоз). Вначале организм компенсирует накопление этих органических кислот увеличением количества выдыхаемого Однако если развитие кетоза не сдерживается введением инсулина, то развивается тяжелый метаболический ацидоз и больной погибает от диабетической комы. Механизм инсулиновой недостаточности схематически представлен на рис. 51.11.

А. Влияние на транспорт глюкозы через мембрану.

Внутриклеточная концентрация свободной глюкозы значительно ниже ее внеклеточной концентрации. Большинство имеющихся данных свидетельствует о том, что скорость транспорта глюкозы через плазматическую мембрану мышечных и жировых клеток определяет интенсивность фосфорилирования глюкозы и ее дальнейший метаболизм. D-глюкоза и другие сахара с аналогичной конфигурацией по (галактоза, D-ксилоза и L-арабиноза) проникают в клетки путем облегченной диффузии, опосредованной переносчиком. Во многих клетках инсулин усиливает этот процесс (рис. 51.12), что обусловливается увеличением числа переносчиков ( -эффект), а не повышением сродства связывания ( -эффект).

Рис. 51.11. Патофизиология инсулиновой недостаточности. (Courtesy of R. J. Havel.)

Согласно имеющимся данным, в жировых клетках это происходит путем мобилизации переносчиков глюкозы из неактивного их пула в аппарате Гольджи с дальнейшим направлением их к активному участку плазматической мембраны. Такая транслокация переносчиков — процесс, зависимый от температуры и энергии и независимый от синтеза белков (рис. 51.13).

Печеночные клетки представляют собой важное исключение из этой схемы. Инсулин не стимулирует облегченной диффузии глюкозы в гепатоциты, но усиливает ее приток косвенным путем, индуцируя глюкокиназу — фермент, превращающий глюкозу в глюкозо-6-фосфат. В результате быстро протекающего фосфорилирования концентрация свободной глюкозы в гепатоцитах поддерживается на очень низком уровне, что способствует проникновению глюкозы в клетки путем простой диффузии по градиенту концентрации.

Рис. 51.12. Проникновение глюкозы в мышечные клетки.

Рис. 51.13. Транслокация переносчиков глюкозы под влиянием инсулина. (Reproduced, with permission, from Karnieli E. et al. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell, J. Biol, Chem., 1981, 256, 4772, Courtesy of S. Cushman.)

Инсулин способствует также проникновению в клетки аминокислот (особенно в мышечные клетки) и стимулирует перемещение нуклеозидов и органического фосфата. Эти эффекты не зависят от влияния инсулина на поступление в клетку глюкозы.

Б. Влияние на утилизацию глюкозы. Как показано ниже, инсулин оказывает влияние на внутриклеточную утилизацию глюкозы различными путями.

В норме примерно половина поглощенной глюкозы вступает на путь гликолиза и превращается в энергию, другая половина запасается в виде жиров или гликогена. В отсутствие инсулина ослабевает интенсивность гликолиза и замедляются анаболические процессы гликогенеза и липогенеза. Действительно, при инсулинодефицитном диабете всего лишь 5% поглощенной глюкозы превращается в жир.

Инсулин усиливает интенсивность гликолиза в печени, повышая активность и концентрацию ряда ключевых ферментов, таких, как глюкокиназа, фосфофруктокиназа и пируваткиназа. Более интенсивный гликолиз сопровождается более активной утилизацией глюкозы и, следовательно, косвенно способствует снижению выхода глюкозы в плазму. Инсулин, кроме того, подавляет активность глюкозо-6-фосфатазы — фермента, обнаруживаемого в печени, но не в мышцах. В результате глюкоза удерживается в печени, так как для глюкозо-6-фосфата плазматическая мембрана непроницаема.

В жировой ткани инсулин стимулирует липогенез путем 1) притока ацетил-СоА и NADPH, необходимых для синтеза жирных кислот, 2) поддержания нормального уровня фермента ацетил-СоА-карбоксилазы, катализирующего превращение ацетил-СоА в малонил-СоА, и 3) притока глицерола, участвующего в синтезе триацилглицеролов. При инсулиновой недостаточности все эти процессы ослабляются и в результате интенсивность липогенеза снижается. Другой причиной снижения липогенеза при инсулиновой недостаточности служит тот факт, что жирные кислоты, высвобождающиеся в больших количествах под действием некоторых гормонов, не встречающих противодействия со стороны инсулина, подавляют собственный синтез, ингибируя ацетил-СоА-карбоксилазу. Из всего сказанного следует, что суммарный эффект влияния инсулина на жир — анаболический.

Механизм влияния инсулина на утилизацию глюкозы включает в себя и другой анаболический процесс. В печени и в мышцах инсулин стимулирует превращение глюкозы в глюкозо-6-фосфат, который затем подвергается изомеризации в глюкозо-1-фосфат и в таком виде включается в гликоген под действием фермента гликогенсинтазы (ее активность также стимулируется инсулином). Это действие имеет двойственный и непрямой характер. Инсулин снижает внутриклеточный уровень сАМР, активируя фосфодиэстеразу. Поскольку сАМР-зависимое фосфорилирование инактивирует гликогенсинтазу, при низком уровне этого нуклеотида фермент находится в активной форме. Инсулин активирует и фосфатазу, катализирующую дефосфорилирование гликогенсинтазы, тем самым активируя этот фермент. И наконец, инсулин ингибирует фосфорилазу с помощью механизма, работающего с участием с АМР и фосфатазы, как описано выше. В результате высвобождение глюкозы из гликогена снижается. Таким образом, влияние инсулина на метаболизм гликогена также является анаболическим.

В. Влияние на образование глюкозы (глюконеогенез). Влияние инсулина на транспорт глюкозы, гликолиз и гликогенез проявляется за считанные секунды

или минуты, поскольку первичные реакции этого влияния сводятся к активации или инактивации ферментов путем их фосфорилирования или дефосфорилирования. Более продолжительное влияние инсулина на содержание глюкозы в плазме крови связано с ингибированием глюконеогенеза. Образование глюкозы из предшественников неуглеводной природы осуществляется в результате ряда ферментативных реакций, многие из которых стимулируются глюкагоном (действие которого опосредовано сАМР), глюкокортикоидными гормонами и в меньшей степени а- и ( -адренергическими агентами—ангиотензином II и вазопрессином. Инсулин же подавляет эти ферментативные реакции. Роль ключевого фермента глюконеогенеза в печени принадлежит фосфоенолпируват-карбоксикиназе (ФЕПКК), катализирующей превращение оксалоацетата в фо-сфоенолпируват. Недавние исследования (см. ниже) показывают, что под действием инсулина количество этого фермента снижается в результате избирательного ингибирования транскрипции гена, кодирующего мРНК для фосфоенолпируват-карбок-сикиназы.

Г. Влияние на метаболизм глюкозы. Результирующее действие всех перечисленных выше эффектов инсулина сводится к снижению содержания глюкозы в крови. Этому действию инсулина противостоят эффекты целого ряда гормонов, что, несомненно, отражает один из важнейших защитных механизмов организма, поскольку длительная гипогликемия способна вызвать несовместимые с жизнью изменения в мозге и, следовательно, ее нельзя допускать.

Д. Влияние на метаболизм липидов. Липогенное действие инсулина уже рассматривалось в разделе, посвященном его влиянию на утилизацию глюкозы. Кроме того, инсулин является мощным ингибитором липолиза в печени и жировой ткани, оказывая, таким образом, непрямое анаболическое действие. Частично это может быть следствием способности инсулина снижать содержание сАМР (уровень которого в тканях повышается под действием липолитических гормонов глюкагона и адреналина), а также способности инсулина ингибировать активность гормон — чувствительной липазы. В основе такого ингибирования лежит, по-видимому, активация фосфатазы, которая дефосфорилирует и тем самым инактивирует липазу или сАМР-зависимую протеинкиназу. В результате инсулин снижает содержание жирных кислот в крови. Это в свою очередь вносит вклад в действие инсулина на углеводный обмен, поскольку жирные кислоты подавляют гликолиз на нескольких этапах и стимулируют глюконеогенез. Данный пример показывает, что при обсуждении регуляции метаболизма нельзя учитывать действие лишь какого-либо одного гормона или метаболита. Регуляция — сложный процесс, в котором превращения по определенному метаболическому пути представляют собой результат сложных взаимодействий целого ряда гормонов и метаболитов.

У больных с инсулиновой недостаточностью активность липазы повышается, что приводит к усилению липолиза и увеличению концентрации жирных кислот в плазме и печени. Содержание глюкагона у таких больных также повышается, и это тоже усиливает выход свободных жирных кислот в кровь. (Глюкагон оказывает противодействие многим эффектам инсулина, и метаболический статус при диабете отражает соотношение уровней глюкагона и инсулина). Часть свободных жирных кислот метаболизируется до ацетил-СоА (обращение липогенеза) и затем в лимоннокислом цикле — до При инсулиновой недостаточности емкость этого процесса быстро оказывается превышенной и ацетил-СоА превращается в ацетоацетил-СоА и затем в ацетоуксусную и -гидроксимасляную кислоты. Под действием инсулина происходят обратные превращения.

Инсулин, по-видимому, влияет на образование или клиренс липопротеинов очень низкой плотности и липопротеинов низкой плотности, поскольку у больных с плохой компенсацией диабета содержание этих частиц, а следовательно, и содержание холестерола часто бывает повышенным. Именно этот метаболический дефект лежит, очевидно, в основе такого серьезного осложнения, как ускоренный атеросклероз, наблюдаемый у многих больных диабетом.

Влияние инсулина на метаболические процессы проиллюстрировано на рис. 51.14, где изображен ряд важнейших метаболических превращений в отсутствие инсулина.

Е. Влияние на метаболизм белков. Инсулин, как правило, оказывает анаболическое действие на белковый обмен, поскольку он стимулирует синтез белков и уменьшает их распад. Инсулин стимулирует поглощение мышцей нейтральных аминокислот типа А—эффект, не связанный с поглощением глюкозы или с последующим включением аминокислот в белки. Влияние инсулина на синтез белков в скелетной и сердечной мышцах проявляется, по-видимому, на уровне трансляции мРНК.

В последние годы было показано, что инсулин влияет на синтез специфических белков, вызывая изменения в соответствующих мРНК. Возможно, именно этим объясняется действие гормона на активность или количество отдельных белков. (Подробнее эта проблема обсуждается ниже.)

Ж. Влияние на размножение клеток. Инсулин стимулирует пролиферацию ряда клеток в культуре. Возможно, он участвует и в регуляции роста in vivo. При изучении регуляции роста чаще всего используются культуры фибробластов. В таких клетках инсулин усиливает способность фактора роста фибробластов (ФРФ), тромбоцитарного фактора роста (ТФР), фактора роста эпидермиса (ФРЭ), стимулирующих

Рис. 51.14. Метаболические последствия инсулиновой недостаточности. СЖК—свободные жирные кислоты.

рост опухолей форболовых эфиров, простаглаидина вазопрессина и аналогов сАМР активировать размножение клеток, остановленных в фазе G, в результате удаления из среды сыворотки.

Преходящая потребность в различных факторах роста лежит в основе концепции о существовании двух классов таких факторов. Один из них, к которому относятся ТФР, ФРФ, ПГЕ2 и форболовые эфиры, вызывает, по-видимому, какие-то биохимические изменения в ранней G-фазе, которые, возникнув, устраняют дальнейшую потребность клетки в этих факторах и делают ее способной к репликации. Факторы роста второго класса (к ним относится инсулин) способствуют «продвижению» клетки к S-фазе и через нее и должны присутствовать постоянно. Данная модель описывает процессы, происходящие в фибробластах ЗТЗ, и ее универсальность не доказана. Не известно также, связан ли эффект инсулина с его взаимодействием с собственным рецептором или с рецептором инсулиноподобного фактора роста (ИФР) (тем более, что ИФР-1 тоже является фактором «продвижения»).

Инсулин поддерживает рост и репликацию многих клеток эпителиального происхождения, в том числе гепатоцитов, клеток гепатомы, клеток опухоли коры надпочечника и клеток карциномы молочной железы. Очень низкие концентрации инсулина стимулируют репликацию (по-видимому, через инсулиновый рецептор), причем нередко это происходит в отсутствие других пептидных факторов роста. Действительно, инсулин является необходимым компонентом всех известных сред для культивирования тканей, так что его значение для роста и репликации клеток несомненно.

Биохимический механизм влияния инсулина на репликацию клеток не выяснен; предполагают, что он основан на анаболическом действии гормона.

Возможно, здесь играет роль влияние на поглощение глюкозы, фосфата, нейтральных аминокислот типа А и катионов. Г ормон может стимулировать репликацию, используя свою способность активировать или инактивировать ферменты путем регуляции скорости и степени фосфорилирования белков или регулируя синтез ферментов.

Весьма интересная новая область исследований связана с изучением тирозинкиназной активности. Инсулиновый рецептор, как и рецепторы многих других факторов роста, включая ТФР и ФРЭ, обладает тирозинкиназной активностью. Важно отметить, что по крайней мере 10 онкогенных продуктов (многие из которых, вероятно, участвуют в стимулировании репликации злокачественных клеток) также представляют собой тирозинкиназы. Клетки млекопитающих содержат аналоги этих онкогенов (протоонкогены), продукты которых могли бы участвовать в репликации нормальных клеток. В пользу предположения о роли протоонкогенов свидетельствуют недавние работы, показавшие, что экспрессия, по крайней мере двух продуктов — после добавления сыровотки к культуре клеток с остановленным ростом усиливается. Показано также что, ТФР стимулирует образование специфических мРНК. Предстоит выяснить, аналогичен ли механизм действия инсулина.

Механизм действия инсулина

А. Рецептор инсулина. Действие инсулина начинается с его связывания со специфическим гликопротеиновым рецептором на поверхности клетки-мишени. Различные эффекты этого гормона (рис. 51.15) могут проявляться либо через несколько секунд или минут (транспорт, фосфорилирование белков, активация и ингибирование ферментов, синтез РНК), либо через несколько часов (синтез белка и ДНК и клеточный рост).

Инсулиновый рецептор подробно исследован с помощью биохимических методов и технологии рекомбинантных ДНК. Он представляет собой гетеродимер, состоящий из двух субъединиц (а и р) в конфигурации связанных между собой дисульфидными мостиками (рис. 51.15). Обе субъединицы содержат много гликозильных остатков. Удаление сиаловой кислоты и галактозы снижает как способность связывать инсулин, так и активность этого гормона. Каждая из гликопротеиновых субъединиц обладает особой структурой и определенной функцией. а-Субъединица (мол. масса) целиком расположена вне клетки, и связывание инсулина, вероятно, осуществляется с помощью богатого цистином домена. -Субъединица (мол. масса 95000) — трансмембранный белок, выполняющий вторую важную функцию рецептора (гл. 44), т. е. преобразование

Рис. 51.15. Связь между рецептором инсулина и его действием. (Courtesy of С. R. Kahn.)

Рис. 51.16. Схема строения рецепторов липопротеинов низкой плотности (ЛПНП), фактора роста эпидермиса (ФРЭ) и инсулина. В каждом из этих рецепторов аминоконцы находятся в той части молекулы, которая выступает из клетки. Рамками обозначены участки, богатые цистеином, которые, как считают, участвуют в связывании лиганда. В каждом рецепторе (

25 аминокислот) имеется короткий домен, пересекающий плазматическую мембрану (заштрихованная полоса), и внутриклеточный домен варьирующей длины. Рецепторы ФРЭ и инсулина обладают тирозинкиназной активностью, локализованной в цитоплазматическом домене; кроме того, в этом домене находятся участки, в которых происходит аутофосфорилирование. Инсулиновый рецептор представляет собой гетеротетрамер, отдельные цепи (вертикальные полосы) которого связаны между собой дисульфидными мостиками.

сигнала. Цитоплазматическая часть 13-субъединицы обладает тирозинкиназной активностью и содержит участок аугофосфорилирования. Считается, что и то и другое важно для преобразования сигнала и действия инсулина (см. ниже). Поразительное сходство между тремя рецепторами, выполняющими различные функции, проиллюстрировано на рис. 51.16. Действительно, последовательности некоторых участков Р-субъединицы гомологичны таковым в рецепторе ФРЭ.

Рецептор инсулина постоянно синтезируется и распадается; его период полужизни составляетч. Рецептор синтезируется в виде одноцепочечного пептида в шероховатом эндоплазматическом ретикулуме и быстро гликозилируется в аппарате Гольджи. Предшественник человеческого рецептора инсулина состоит из 1382 аминокислот, его мол. масса составляет, при расщеплении он образует зрелые а- и Р-субъединицы. У человека ген инсулинового рецептора локализован в хромосоме 19.

Рецепторы инсулина обнаружены на поверхности большинства клеток млекопитающих. Их концентрация достигаетна клетку, причем часто они выявляются и на таких клетках, которые не относят к типичным мишеням инсулина. Спектр метаболических эффектов инсулина хорошо известен. Однако инсулин участвует и в таких процессах, как рост и репликация клеток (см. выше), органогенез и дифференцировка у плода, а также в процессах заживления и регенерации тканей. Строение инсулинового рецептора, способность различных инсулинов связываться с рецепторами и вызывать биологические реакции практически идентичны в клетках всех типов и у всех видов. Так, свиной инсулин почти всегда в 10—20 раз эффективнее свиною проинсулина, который в свою очередь в 10—20 раз эффективнее инсулина морской свинки даже у самой морской свинки. Инсулиновый рецептор имеет, по-видимому, высоко консервативную структуру, еще более консервативную, чем структура самого инсулина.

При связывании инсулина с рецептором происходят следующие события: 1) изменяется конформация рецептора, 2) рецепторы связываются друг с другом, образуя микроагрегаты, пятна (patches) или нашлепки, 3) рецептор подвергается интернализации и 4) возникает какой-то сигнал. Значение конформационных изменений рецептора не известно, но интернализация, вероятно, служит средством регуляции количества и кругооборота рецепторов. В условиях высокого содержания инсулина в плазме, например при ожирении или акромегалии, число инсулиновых рецепторов снижается и чувствительность тканей-мишеней к инсулину уменьшается. Такая «снижающая» регуляция обусловлена потерей рецепторов в результате их интернализации, т.е. процесса проникновения инсулин-рецепторных комплексов в клетку путем эндоцитоза с помощью покрытых клатрином пузырьков (см. гл. 41). «Снижающая» регуляция объясняет отчасти инсулинорезистентность при ожирении и сахарном диабете II типа.

Б. Внутриклеточные медиаторы. Хотя механизм действия инсулина изучается более 60 лет, некоторые важнейшие вопросы, например природа внутриклеточного сигнала, остаются нерешенными, и инсулин в этом отношении не исключение. Внутриклеточные посредники не идентифицированы для очень многих гормонов (табл. 44.1). Множество различных молекул рассматривалось в качестве возможных внутриклеточных вторых посредников или медиаторов. К ним относятся сам инсулин, кальций, циклические нуклеотиды (сАМР, cGMP), , пептиды мембранного происхождения, фосфолипиды мембраны, одновалентные катионы и тирозинкиназа (рецептор инсулина). Не одно из предположений не подтвердилось.

В центре внимания современных исследователей лежит тот факт, что инсулиновый рецептор сам является ферментом, чувствительным к инсулину, поскольку при связывании инсулина он подвергается аутофосфорилированию. Эта функция осуществляется Р-субъединицей, которая, действуя как протеинкиназа, переносит у-фосфат с АТР на остаток тирозина в -субъединице. Инсулин повышает Утах этой ферментативной реакции, а двухвалентные катионы, особенно снижают для АТР.

Фосфорилирование тирозина нетипично для клеток млекопитающих (на долю фосфотирозина приходится всего 0,03% фосфоаминокислот, содержащихся в нормальных клетках), и вполне возможно, что наличие у рецепторов ФРЭ, ТФР, ИФР-1 тирозинкиназной активности неслучайно. Существует предположение, что тирозинкиназная активность — важный фактор в действии продуктов ряда вирусных онкогенов. Их связь с клеточными аналогами онкогенов, обладающими сходными свойствами при злокачественном и нормальном клеточном росте, рассматривалась выше. Изучение структуры этих компонентов выявило высокую степень гомологии между рецепторами и онкогенами, например между рецептором ФРЭ и между рецептором ТФР и и между инсулиновым рецептором и v-rav.

Участие тирозинкиназы в преобразовании инсулин-рецепторного сигнала не доказано, но оно могло бы заключаться в фосфорилировании специфического белка, инициирующего действие инсулина, в запуске каскада фосфорилирование-дефосфорилирование, в изменении некоторых свойств клеточной мембраны или образовании какого-то связанного с мембраной продукта, например фосфолипида.

В. Фосфорилирование-дефосфорилирование белка.

Многие из метаболических эффектов инсулина, особенно те, которые возникают быстро, опосредованы его влиянием на реакции фосфорилирования-дефосфорилирования белка, что в свою очередь влияет на ферментативную активность данного белка. Перечень ферментов, активность которых регулируется таким путем, приведен в табл. 51.3. В некоторых случаях инсулин снижает внутриклеточное содержание с АМР (активируя сАМР-фосфодиэстеразу), что приводит к уменьшению активности сАМР-зависимой протеинкиназы. Такие эффекты характерны для гликогенсинтазы и фосфорилазы. В других случаях действие инсулина не зависит от с АМР и сводится к активации других протеинкиназ (например, в случае тирозинкиназы инсулинового рецептора), ингибированию третьих протеинкиназ (табл. 44.4) или (что значительно чаще) к стимуляции фосфатаз фосфопротеинов. Дефосфорилирование увеличивает активность ряда ключевых ферментов (табл. 51.3). Такие ковалентные модификации обеспечивают почти мгновенные изменения активностей ферментов.

Таблица 51.3. Ферменты, степень фосфорилирования и активность которых регулируются инсулином. (Modified and reproduced, with permission, from Denton R. M. et al: a partial view of the mechanism of insulin action. Diabetologia 1981, 21, 347.)

Г. Влияние на трансляцию мРНК. Известно, что инсулин влияет на количество и активность по крайней мере 50 белков в различных тканях, причем многие из этих эффектов сводятся к ковалентной модификации. Представление о роли инсулина в трансляции мРНК основывается главным образом на данных о рибосомном 86-белке—компоненте рибосомной субъединицы Такой механизм мог бы обеспечивать общее влияние инсулина на синтез белков в печени, скелетных и сердечных мышцах.

Д. Влияние на экспрессию генов. Все описанные эффекты инсулина реализуются на уровне плазматической мембраны или в цитоплазме. Однако инсулин способен влиять (по-видимому, через свой внутриклеточный медиатор) и на некоторые специфические ядерные процессы. Фермент фосфоенолпнруват-карбоксикнназа (ФЕПКК) катализирует скорость — лимитирующую реакцию глюконеогенеза. Синтез ФЕПКК под действием инсулина снижается, а следовательно, уменьшается и интенсивность глюконеогенеза. Сравнительно недавно было показано, что при добавлении инсулина к культуре клеток гепатомы уже через несколько минут избирательно уменьшается скорость транскрипции гена ФЕПКК (рис. 51.17). В результате уменьшается количество как первичного транскрипта, так и зрелой что в свою очередь приводит к снижению синтеза ФЕПКК. Этот эффект проявляется при физиологических концентрациях инсулина опосредуется инсулиновым рецептором и, по-видимому, обусловлен снижением скорости синтеза

Рис. 51.17. Влияние гена инсулина на транскрипцию специфического гена. При внесении инсулина в культуру клеток гепатомы скорость транскрипции гена ФЕПКК быстро снижается, что сопровождается уменьшением количества первичного транскрипта в зрелой При уменьшении количества цитоплазматической снижается и скорость синтеза ФЕПКК-белка. (Reproduced, with permission, from Sasaki K.et al. Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription, J. Biol. Chem., 1984, 259, 15242.)

Впервые влияние инсулина на транскрипцию генов было обнаружено при изучении механизма регуляции ФЕПКК, однако в настоящее время известны и другие примеры. Более того, представляется вероятным, что регуляция синтеза мРНК — главный эффект инсулина. Инсулин оказывает влияние на синтез многих специфических мРНК (табл. 51.4), в том числе на пока не идентифицированные мРНК в печени, жировой ткани и в мышцах (скелетных и сердечной). Доказано действие инсулина на транскрипцию генов овальбумина, альбумина и казеина.

Действие инсулина распространяется на ферменты, остающиеся в клетках, на секретируемые ферменты и белки, на белки, принимающие участие в процессах размножения, и на структурные белки (табл. 51.4). Эти эффекты регистрируются во многих органах и тканях и у многих видов. Регуляция транскрипции специфических мРНК под действием инсулина в настоящее время не вызывает сомнений. Этот путь модуляции ферментативной активности по важности не уступает механизму фосфорилирования-дефосфорилирования. Именно влиянием инсулина на транскрипцию генов, вероятно, объясняется его роль в эмбриогенезе, дифференцировке, а также росте и делении клеток.

Таблица 51.4. Белки, информационные РНК которых регулируются инсулином

Патофизиология

При недостаточности инсулина или устойчивости к его действию развивается сахарный диабет. Примерно у 90% больных диабетом наблюдается инсулин-независимый сахарный диабет II типа (ИНЗСД). Для таких больных характерны ожирение, повышенное содержание в плазме инсулина и снижение количества инсулиновых рецепторов. У остальных 10% больных наблюдается диабет типа I, т.е. инсулинзависимый сахарный диабет I типа (ИЗСД). Рассмотренные выше метаболические нарушения более типичны именно для диабета типа I.

Ряд редких состояний иллюстрирует важные особенности действия инсулина. У некоторых людей образуются антитела к рецепторам инсулина. Эти антитела предотвращают связывание инсулина с рецептором, и в результате у таких лиц развивается синдром тяжелой инсулинорезистентности (см. табл. 43.2). При опухолях из В-клеток возникает гиперин-сулинемия и синдром, характеризующийся тяжелой гипогликемией. О важной роли инсулина (или, возможно, ИФР-1 или ИФР-2) для органогенеза свидетельствуют редкие случаи карликовости. Этот синдром характеризуется низким весом при рождении, малой мышечной массой, малым количеством подкожного жира, очень мелкими чертами лица, инсулинорезистентностью со значительным повышением содержания биологически активного инсулина в плазме и ранней смертью. У некоторых таких больных либо совсем отсутствовали рецепторы инсулина, либо они были дефектными.

Раздел V. Биохимия внутри- и межклеточных коммуникаций

Раздел VI. Частные вопросы

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Источник: http://edu.sernam.ru/book_b_chem2.php?id=120

×